Various types of recyclable materials are currently used in civil engineering applications. These include tire shreds, ground tire rubber, fly and bottom ash, blast-furnace slag, steel slag, cement kiln dust, silica fume, crushed glass, reclaimed asphalt pavement (RAP), and rice husk ash. Reutilization of these recyclable materials is especially beneficial in civil engineering applications that require large volumes of materials. When these waste products are used in place of other conventional materials, natural resources and energy are preserved and expensive and/or potentially harmful waste disposal is avoided. This special issue deals with the use of recyclable materials in diverse civil engineering applications focusing on sustainable development. The papers in this special issue present results of laboratory tests and important research findings for these materials, recommendations for debris recycling practices, and documented field applications of several waste or recyclable materials. The risk of constructing structures on collapsible soils presents significant challenges to geotechnical engineers due to sudden reduction in volume upon wetting. Identifying collapsible soils when encountered in the field and taking the needed precautions should substantially reduce the risk of such problems usually reported in buildings and highways. Collapsible soils are those unsaturated soils that can withstand relatively high pressure without showing significant change in volume. One method for treating collapsible soils is to densify their structure by compaction. The ongoing study presents the effect of compaction on the geotechnical properties of the collapsible soils. Undisturbed block samples were recovered from test pits at four sites in Borg El-Arab district, located at about 20 km west of the city of Alexandria, Egypt. The samples were tested in both unsoaked and soaked conditions. Influence of water inundation on the geotechnical properties of collapsible soils was demonstrated

Keywords: *Civil waste *Collapsible soil *Environmental application, *Civil Engineering Application *Prediction air pollution Delhi India and Kuala Lumpur Malaysia *During Spring Period